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LETTER TO THE EDITOR

Absence of many states in realistic spin glasses

Daniel S Fisher and David A Huse
A T & T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, USA

Received 21 April 1987

Abstract. Based on a simple scaling ansatz, we argue that no pure thermodynamic states
other than the paramagnetic state and a pair of states in zero magnetic field which are
related by a global spin flip can exist in short-range Ising spin glass models in any dimension.
An analogous result should hold for XY and Heisenberg spin glasses, as well as for
square-integrable long-range intractions.

One of the primary themes running through the theoretical literature on spin glasses
is the idea that the ordered phase will generally be characterised by the coexistence
of infinitely many pure (or extremal) states. This hypothesis arose from Parisi’s solution
of the infinite-range Sherrington-Kirpatrick (sk) model [1].

We have previously argued [2] that in realistic (i.e. finite-range) spin glasses, the
nature of the ordered phase should be quite different from the sk model. For Ising
systems in zero magnetic field and temperatures below the phase transition T, which
should exist [2-5] for sufficiently large dimension, d, there are two pure states differing
from one another by a global spin flip. In this letter we present several suggestive
arguments, based on a scaling ansatz introduced in [2] that, in a strong sense, there
do not exist any other pure states in realistic spin glasses. For most of this letter we
concentrate on Ising systems and at the end discuss extensions of the conclusions to
XY and Heisenberg systems. Note: we will henceforth drop ‘pure’ and use ‘state’ to
mean a pure equilibrium state; we do not consider ‘metastable states’. By definition,
all other equilibrium states are linear combinations of the pure states [6].

Much of the discussion in the literature on the existence of many states in spin
glasses has been focused on the ‘overlap’ function P(q) [1]. In a companion letter
[7] we demonstrated that P(q) is not the appropriate quantity to address this issue
for finite-range systems and, further, that in this regard both the sk model and spin
glasses on Bethe lattices are likely to be very different from models on finite-dimensional
lattices.

Instead of studying P(g) we must ask whether, in a given realisation of an infinite
Ising system, one can choose different sets of boundary conditions on an infinite
sequence of boxes {B,,}, of linear sizes A,, (centred on the origin), in such a way as
to yield sets of indecomposable correlation functions (states) near the origin which
differ by other than a global spin flip. Two states differing by a global spin flip occur
if the system orders in zero magnetic field; we are interested in the question of other
possible states. In particular, can we find more than one thermodynamic limit for the
nearest-neighbour spin correlation, (S,S,), between the spin at the origin and one of
its nearest neighbours? For simplicity, we avoid exact degeneracies by restricting our
attention to continuous distributions of exchange J;.

Physically, it is important to distinguish between (i) regionally congruent states
which are related by a symmetry operation (i.e. spin flip) over all regions of the system
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except near defect structures (e.g. domain walls) of dimension less than d and (ii)
incongruent states which differ by other than a spin flip over a finite fraction of the
system. Examples of the distinction, discussed in detail in [7], are, respectively, (i)
the up state and a state which consists of a single smooth domain wall separating up
and down regions in the 3D Ising ferromagnet below its roughening temperature and
(ii) coexisting paramagnetic and ferromagnetic states at a first-order phase transition,
or, less trivially, the up and down states of a random-field ferromagnet [8].

Implicit in the literature on spin glasses appears to be the assumption that the
finite-dimensional version of the sk model’s many states, if they exist, will be incon-
gruent in the above sense. Here we argue that neither incongruent states nor regionally
congruent states exist other than a pair of states which differ by a global spin flip.
(Two incongruent and dissimilar states could exist at isolated first-order transitions
from, e.g., spin glass to paramagnet; we will henceforth exclude such special points
from the discussion.)

The organisation of this letter is as follows: we first consider the behaviour at zero
temperature of ground states in an infinite system. A ground state has the property
that its energy cannot be lowered by flipping the spins in any finite region. We give
the fundamental scaling ansatz for the ‘stiffness’ of the system as a function of length
scale [2]. Then, based on this ansatz, we argue that no incongruent states exist. We
next give two arguments based on the roughness of domain walls and on scale invariance
that there do not even exist regionally congruent states except for the two globally
congruent states which are the unique pair of states related by a global spin flip. The
results are then extended to positive temperature. We discuss possible failures of the
ansatz and their consequences, and, finally, experimental implications of our con-
clusions.

Our fundamental ansatz, motivated by the work of Anderson and Pond and others
[4, 5], is that the stifiness of a spin glass ground state on length scale L scales as L°
with 8> 0 necessary in order to stabilise the spin glass phase at positive temperature.
We restrict ourselves to this case. More precisely, for a d-dimensional system, consider
a box of length L on each side with periodic boundary conditions in d —1 of the
directions and a particular boundary condition a on the top and bottom of the box.
The surface free energy (or at T =0 energy) between boundary conditions a and b is
defined by

Y=:Fi+F,-F;—F.]

ab
where Fy denotes the free energy with boundary condition a on the top of the box
and b on the bottom. Of particular interest is the stifiness against spin flips, i.e. between
a and @ which is obtained from a by a global spin flip. Then we hypothesise, following
[2], that Z,;, which can be of either sign, typically has magnitude =, ~ L°® for L > cc.
The exponent 6, which we have previously argued satisfies 8 < (d —1)/2, also controls
the lowest energy droplet excitations of volume L? in an infinite system [2]. It is also
useful to define a maximum stiffness, i=maxa‘b 2., scaling as L? with 6=6. The
natural and simplest ansatz is that § = 6 so that any spin glass stiffness on a scale L
typically (in the distribution of realisations) scales as L®. We return at the end of the
letter to possible consequences if 6#6.

We first consider, in a given realisation, two putative incongruent ground states a,
B which differ over a finite fraction of the system. On large length scales L, these
differ by a positive fraction of the nearest-neighbour spin pairs in a positive fraction
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of boxes of size L. If the pairs were independent, the typical energy difference between
a and B in such a box would be at least L2, (In contrast, the fluctuations in a subset
of L™ bonds with x <d could be much less.) Anticorrelations due to the constraints
that both @ and B are ground states are unlikely to decrease the difference significantly;
this is known to be the case for the up and down states in a random-field ferromagnet
[8]. However, with a cost in energy of order L°, a droplet of the locally lower energy
state, say «, can be inserted into state 8 and connected to it on a scale 2L. But since
9~<%d this would lower the energy of state 8. Thus incongruent ground states do not
appear to be consistent with our ansatz. Note that it seems quite likely that the lowest
energy configuration which differs from a ground state on a non-zero fraction of the
bonds does, in fact, differ in energy density. Arguments for this would be extremely
useful and would directly rule out incongruent states.

We now consider constructing states which differ from a given ground state, which
we denote 1, and its global spin reversal 1 by domain walls.

Any configuration can be represented, up to a global spin flip, by a set, W, of
(d —1)-dimensional domain walls between regions that are locally 1 and 1. Ground
states consist of wall configurations, W*°, whose energy cannot be lowered by moving
or removing finite sections of domain wall.

The simplest kind of ground state that is neither 1 or 1 consists of a single infinite
wall, possibly with a complicated topology, passing across the system. This can be
obtained by boundary conditions which fix the intersections, d W3, of the wall, W¢,
and the surfaces of boxes {B,}. We must ask whether in the thermodynamic limit
there is a positive probability that such boundary conditions can be chosen so as to
make the minimum energy (minimal) wall, W*, pass between sites zero and one. We
argue below that this is not the case, and therefore that there are only two ground
states, which differ simply by a global spin flip.

Because 6 < d —1, the energy of a section of a minimal domain wall on length scale
L is not simply the sum of positive energies of smaller sections of scale less than L.
In fact, the local energy of a small section of a large wall is almost as likely to be
negative as positive. The wall deviates from a simple flat geometry in order to pass
through regions where the local wall energy is negative. Because of this, we expect
the minimal wall to have overhangs, handles, etc, on all length scales and hence to be
fractal with surface area scaling as L%, where d,>(d —1) is the fractal dimension of
the domain wall. By the above argument for the absence of incongruent states, it
follows that minimal walls cannot be space-filling, and hence d, <d. This implies that
the probability of a wall with a given § W, passing through the origin vanishes as the
box size A, » . However, we must ask whether we can force W to pass through the
origin by adjusting the boundary condition 9 W,,,.

Because the wall is rough on the scale of the box, the position of W in the interior
of a box cannot be very precisely controlled by adjusting the boundary condition,
dW,,. If the boundary condition is adjusted by continuously moving 8 W,,, then typically
the parts of W well inside the interior of the box do not move at all until a point is
reached where a new position, some fraction of the box size A, away, becomes of
equal energy. Beyond this point the minimal wall, W, jumps discontinuously to the
new position. Thus there are only a few positions that the sections of the wall in the
central portion of the box can be forced into. If this were not the case, then the
minimal wall would evolve smoothly as the boundary conditions are varied and there
would exist large sections of minimal walls, W and W’, which are very close to one
another and which have nearly identical local energy. This is a priori improbable since
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it would imply an anomalous density of low-energy excitations in the putative ground
state formed by the single wall W.

We thus conclude that, because the walls are rough on the same scale as their size,
the probability that any minimal wall in a box of size A, passes between sites 0 and
1 goes to zero as A,, > .

This argument depended on the form of the ground state and its excitations. We
now present another argument which explicitly uses the scale invariance suggested by
the existence of a non-trivial exponent 6.

We consider in an infinite system a sequence of boxes of size A,, = A™ (A=2) and
investigate the probability that the mth box is isolated from the nth (n> m) which
occurs if there does not exist any boundary condition on box B, which alters the
ground-state configuration inside box B,, by other than an overall spin flip.

We now give a suggestive argument that the probability p,, that the (m +1)th box
is isolated from the (m + k)th (with A and k to be chosen) tends to a positive constant
as m— . Since for n>» m, p, is nearly independent of p,,, it follows from this that,
with probability one, any given box is isolated from infinity and hence, in any finite
region of an infinite system, the ground state is unique up to an overall spin flip.

It is useful to introduce schematic coarse-grained spins {u"} for blocks of volume
A%. These should be definable since we have already argued that there are no
incongruent states. The original scaling ansatz suggests the existence of a fixed point
Hamiltonian for interactions between the block spins on level m with an overall energy
scale A5, and thus, by analogy with the critical point for percolation [9], we expect
probabilities of certain types of events to be scale invariant. For example, if we coarse
grain to the mth level and put boundary conditions on the u™, the probability g,, that
the (m+ 1)th box is isolated from the (m + k)th is independent of m for large m. For
some positive fraction of the cases in which the u™ in B,,,, are isolated, the original
spins in B, are also; thus B,,., is isolated from the block spin boundary conditions
on dB,,., with a probability of some fixed fraction of g, for large m.

The effects of tuning the boundary conditions on scales finer than A,, can be taken
into account iteratively (see figure 1). First note that a boundary condition on the u’
has a comparable effect far away from the boundary to a weaker boundary condition
on the u’*' at some distance CA; further in from the original boundary. Then by
iterating, we see that a boundary condition on scale 1 should be roughly equivalent
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Figure 1. lllustration of a scale invariance argument for the probability of the shaded box
being isolated from the boundary, showing coarse-grain spins at levels 1, 2 and 3 (see text).
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to a boundary condition at scale A,, a distance 22! CA’ < CA,, further in. This is
illustrated in figure 1. But now, provided A* is chosen to be greater than 4C, the
probability of isolating B,,., from this new block spin boundary condition is again
independent of m and hence p,, » a constant, as desired. We note that there is some
chance of making an argument of this form more precise by choosing A and k to be
large.

We have so far argued that, at T =0, any finite region of size A is isolated from
boundary conditions far away. To extend the arguments to positive temperature, we
coarse grain in the mth box to a scale I, ~ A}, with x<1 to take into account the
thermal fluctuations as described in [2] (this only works for 6 >0). We then have
effectively a ground-state problem, albeit with a markedly different Hamiltonian than
would have been obtained from coarse graining the original T =0 problem. We then
argue as above, but with isolation defined at each stage with some tolerance which
can be chosen to approach zero for large boxes due to the low desnity, T/L? of
thermally activated fl ictuations on large scales [2].

Our conclusion is that either T, =0, which occurs for 8 <0, in which case there is
only one state at all positive temperatures, or, for 8 >0, there are two states related
by a global spin flip in zero magnetic fields for T < T and, as argued in [2], one state
elsewhere. For 6 =0, something more complicated could occur, but it is unlikely to
involve more than two states at a given temperature.

For 6> 0, the states change with temperature, i.e. as T is changed the sign of the
long distance correlations change randomly [2]. Associated with this—which essen-
tially amounts to a continuous sequence of infinitesimal first-order phase transitions
for T < T.—is a breakdown of the conventional relationships between energy fluctu-
ations and thermodynamic derivatives.

The arguments we have presented are based on the simplest possible ansatz for
the scaling of the spin glass stifiness. However, it is possible that the behaviour is
more complicated. In particular, a weak point is certainly the assumption that 6=6.
We briefly consider the conscguences of 6> 6.

First note that, as long as § <1d, the arguments [2] for the absence of incongi aent
stattes are valid, smce if incongruent states existed 6 would be an upper bound for
the scaling exponent 6 of the interfacial free energy between them. If 6>4d, on the
other hand, our arguments fail. Furthermore, our earlier arguments [2] for the absence
of a transition in a magnetic field would fail since many states for H>0 could
presumably be constructed from the incongruent states at H =0. However 6> 3d (or
more precisely 6> 3d) does not necessarily imply the existence of incongruent states.
In particular, as mentioned earlier, it may be possible to argue that, in general, any
configuration which differs (by other than a spin flip) from a ground state in a finite
fraction of space will differ in energy density, thus directly ruling out incongruent states.

In this letter, we have given several suggestive arguments that, for Ising spin glasses
with short-range interactions, there are only two pure states which correspond to the
broken global symmetry. As in [2], we expect the results to hold also for square
integrable long-range spin glass interactions and for systems with continuous symmetry
for which, when the symmetry is broken, the only possible states are globally related
to one another by (possibly improper) elements of the rotation group. For XY or
Heisenberg systems in a uniform magnetic field, it is still possible that the rotational
symmetry about the field direction is spontaneously broken and there can thus be a
Gabay-Toulouse line [10]. A randomly oriented magnetic field destroys the transition,
however, as for the Ising case. Thus real spin glass ordered phases are, perhaps, rather
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similar to Edwards and Anderson’s original picture [1] but radically different from
Parisi’s solution [1] of the sk model.

Note that the experimental consequences of the existence, or lack thereof, of many
states are rather minimal, primarily because equilibrium on long length scales requires
prohibitively long times and real systems are therefore always in a metastable state.
However, in principle, microprobes which measure the detailed correlations in a small
region of a large system might be used to address this question.

Bovier and Frohlich [12] have recently discussed the possibility of ‘domain wall’
states in short-range spin glasses; they reach conclusions rather different from ours.
The fundamental discrepancy is associated with their assertion that an exponent related
to 8 must be equal to (d —1) for a phase transition to exist.

We would like to acknowledge stimulating discussions with Jennifer Chayes, Lincoln
Chayes and Michael Fisher, and thank P C Hohenberg and R N Bhatt for comments
on the manuscript.
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